Canopy-Level Photochemical Reflectance Index from Hyperspectral Remote Sensing and Leaf-Level Non-Photochemical Quenching as Early Indicators of Water Stress in Maize

نویسندگان

  • Shuren Chou
  • Jing M. Chen
  • Hua Yu
  • Bin Chen
  • Xiuying Zhang
  • Holly Croft
  • Shoaib Khalid
  • Meng Li
  • Qin Shi
چکیده

In this study, we evaluated the effectiveness of photochemical reflectance index (PRI) and non-photochemical quenching (NPQ) for assessing water stress in maize for the purpose of developing remote sensing techniques for monitoring water deficits in crops. Leaf-level chlorophyll fluorescence and canopy-level PRI were measured concurrently over a maize field with five different irrigation treatments, ranging from 20% to 90% of the field capacity (FC). Significant correlations were found between leaf-level NPQ (NPQleaf) and the ratio of chlorophyll to carotenoid content (Chl/Car) (R2 = 0.71, p < 0.01) and between NPQleaf and the actual photochemical efficiency of photosystem II (∆F/Fm′) (R2 = 0.81, p < 0.005). At the early growing stage, both canopy-level PRI and NPQleaf are good indicators of water stress (R2 = 0.65 and p < 0.05; R2 = 0.63 and p < 0.05, respectively). For assessment of extreme water stress on plant growth, a relationship is also established between the quantum yield of photochemistry in PSII (ΦP) and the quantum yield of fluorescence (ΦF) as determined from photochemical quenching (PQ) and non-photochemical quenching (NPQleaf) of excitation energy at different water stress levels. These results would be helpful in monitoring soil water stress on crops at large scales using remote sensing techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities

Given the importance of forest ecosystems, the availability of reliable, spatially explicit information about the site-specific climate sensitivity of tree species is essential for implementing suitable adaptation strategies. In this study, airborne hyperspectral data were used to assess the response of deciduous species (dominated by European beech and Sessile and Pedunculate oak) to water str...

متن کامل

Diurnal Cycle Relationships between Passive Fluorescence, PRI and NPQ of Vegetation in a Controlled Stress Experiment

In order to estimate vegetation photosynthesis from remote sensing observations; some critical parameters need to be quantified. From all absorbed light; the plant needs to release any excess that is not used for photosynthesis; by non-photochemical quenching; by fluorescence emission and unregulated thermal dissipation. Non-photochemical quenching (NPQ) processes are controlled photoprotective...

متن کامل

Estimation of Canopy Water Content by Means of Hyperspectral Indices Based on Drought Stress Gradient Experiments of Maize in the North Plain China

Here, we conducted drought stress gradient experiments of maize, and used ten water content related vegetation indices (VIs) to estimate widely variable canopy water content (CWC) and mean leaf equivalent water thickness at canopy level (EWT ̅̅ ̅̅ ̅̅ ̅) based on in situ measurements of Lambertian equivalent reflectance and important biological and environmental factors during the 2013−2014 growing sea...

متن کامل

Rethinking Chlorophyll Responses to Stress: Fluorescence and Reflectance Remote Sensing in a Coastal Environment

Chlorophyll fluorescence and hyperspectral reflectance were used to evaluate physiological responses to two common stressors in coastal environments. Chlorophyll content is one indicator of drought and salinity vegetation stress because of its direct role in the photosynthetic process and electron transport. Recent advances in fluorescence spectroscopy have led to the development of numerous re...

متن کامل

Early Detection and Quantification of Almond Red Leaf Blotch Using High-Resolution Hyperspectral and Thermal Imagery

Red leaf blotch is one of the major fungal foliar diseases affecting almond orchards. High-resolution thermal and hyperspectral airborne imagery was acquired from two flights and compared with concurrent field visual evaluations for disease incidence and severity. Canopy temperature and vegetation indices were calculated from thermal and hyperspectral imagery and analyzed for their ability to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017